DeepPaSTL: Spatio-Temporal Deep Learning Methods for Predicting Long-Term Pasture Terrains Using Synthetic Datasets

نویسندگان

چکیده

Effective management of dairy farms requires an accurate prediction pasture biomass. Generally, estimation biomass site-specific data, or often perfect world assumptions to model systems when field measurements other sensory inputs are unavailable. However, for small enterprises, regular data inconceivable. In this study, we approach the by predicting sward heights across field. A convolution based sequential architecture is proposed height predictions using deep learning. We develop a process create synthetic datasets that simulate evolution growth over period 30 years. The learning (DeepPaSTL) trained on dataset while spatiotemporal characteristics growth. purely learns from trends in through available spatial and agnostic any climatic conditions, such as temperature, precipitation, soil condition. Our performs within 12% error margin even during periods with largest dynamics. study demonstrates potential scalability predict size quantization prediction. Results suggest DeepPaSTL represents useful tool both short long horizon predictions, missing irregular historical measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks

Forecasting the flow of crowds is of great importance to traffic management and public safety, and very challenging as it is affected by many complex factors, including spatial dependencies (nearby and distant), temporal dependencies (closeness, period, trend), and external conditions (e.g. weather and events). We propose a deep-learning-based approach, called ST-ResNet, to collectively forecas...

متن کامل

Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...

متن کامل

Investigation of Long Term Trend of Spatio-Temporal changes of Sea Surface Temperature in Oman Sea

Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine th...

متن کامل

Long-Term Mobile Traffic Forecasting Using Deep Spatio-Temporal Neural Networks

Forecasting with high accuracy the volume of data traffic that mobile users will consume is becoming increasingly important for precision traffic engineering, demand-aware network resource allocation, as well as public transportation. Measurements collection in dense urban deployments is however complex and expensive, and the post-processing required to make predictions is highly non-trivial, g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2021

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy11112245